
AutoRDF - Using OWL as an Object Graph
Mapping (OGM) specification language

Fabien Chevalier

AriadNEXT
80 avenue des Buttes de Coëmes

35700 RENNES - FRANCE
Email: fabien.chevalier@ariadnext.com

Abstract. AutoRDF is an original open source framework that facili-
tates handling RDF data from a software engineering point of view. Built
on top of the Redland software package, it bridges the gap between se-
mantic web ontology and legacy object oriented languages, by providing
transparent access to RDF resources from within standard C++ objects.
Its use of widespread C++11, Boost and Redland makes it suitable not
only for the desktop and server, but also for low computing power em-
bedded devices. This framework is a result of the IDFRAud research
project, where it is used to handle complex domain specific knowledge
and make it available on smartphone-class devices.

1 Introduction

IDFRAud [4] project is an industrial research project led by French ID document
verification leader company AriadNEXT. One of the objectives of IDFRAud is
to propose an automatic solution for ID verification that can handle documents
issued from a large set of countries. The solution will be able to execute specific
controls according to the ID model (type, country, generation, etc) thanks to a
knowledge base. The core idea of IDFRAud project is to provide an automatic
verification system for identity documents in order to replace existing manual
verification processes. The different components of ID analysis and verification
in IDFRAud are driven by a set of control rules. In order to guarantee an inter-
pretable and adaptive behavior at each ID analysis step, the identity document
descriptions are organized by a knowledge management module.

One of the requirements of our knowledge management module is its inter-
operability and portability. It is preferred to store the data in a standard way
in order to be able to use other tools such as Sewelis [8] to navigate our data.
Another strong requirements are that we must be able to easily extract a sub-
set of the knowledge base to run on mobile platforms, where C/C++ language
rules. After a thorough analysis of existing technologies, we decided to use RDF
for its versatility/flexibility of knowledge modelling using graphs, coupled with
its capability to bring formal structure to the knowledge using Web Ontology
Language (OWL).

Providing an efficient, consistent, and descriptive enough model for ID docu-
ments proves to be a very challenging task. The biggest issues encountered is the
very high diversity of how ID documents look like, which makes it really difficult
to design a data model that fits all cases. As such it is anticipated that the model
will see serious evolutions with the number of supported documents. The second
biggest issue is the fast evolving fraud patterns, which makes it necessary to add
document characteristic attributes very easily in the system.

As such we needed something that could make code base maintenance easy
by being able to follow a constantly evolving ontology. AutoRDF can be of some
use to any kind of project that needs to manipulate RDF data where an ontology
exists. The use of modern C++ make it portable to a wide variety of platforms,
including all mobile phone platforms, as well as most of the embedded world
systems.

2 Related work

Code generators that are used in conjunction with UML design softwares such as
BOUML [1] or IBM Rational Rose [3], are principally based on data modelling.
Some other well known open source frameworks such as Hibernate OGM [2],
or Neo4j OGM [5] provide easy read/write for Java objects to or from graph
databases. They use a more code-centric approach, where annotations store the
information the framework uses to know how object must be serialized. As such
they are not model-centric, but more code-centric.

AutoRDF tries to promote a software design approach where data modelling
is treated as a first class citizen. It shares also some ideas with Protégé code
generator plugin [6], as it uses a similar code generating approach. However it
goes further than all those tools, as it does not only build interface classes that
would need to be implemented by the developer, but provides a ready to use
object class hierarchy to read and write data to disk.

Compared to Redland [7], AutoRDF raises the abstraction level by under-
standing web ontologies, as well as providing a C++ object oriented design to
RDF graphs API whereas Redland is a pure C library. It has some similarities
with owlcpp [10], however this library has no C++ proxy code generation ca-
pability, and AutoRDF tries to keep the bar as low as possible for occasional
users, by providing an easy to use C++11 API. It is quite similar in goal to the
Automatic Mapping of OWL Ontologies described in [9], however transferred to
C++/embedded world as an open source project.

3 Introducing AutoRDF

AutoRDF is an open source semantic web code generator for C/C++. It parses
a Web Ontology Language file (OWL), builds an internal representation of the
ontology, and generates a set of C++ classes that make it easy to read/write
RDF data from within C++. It uses the well established Redland [7] library
to perform all its input/output operations. AutoRDF uses a proxy approach,

no data is copied into the C++ objects. C++ objects edit the underlying RDF
graph in real time when the C++ object methods are called.

AutoRDF supports a subset of RDFS and OWL. Resources of type
rdfs:Resource or owl:Class are identified as candidates for class generation,
owl:subClassOf is used to generate inheritance relationship between generated
C++ classes. owl:oneOf allows smart mapping to C++ enums. owl:hasKey gen-
erates a static object loading method, taking the key as parameter. Resources of
type owl:DatatypeProperty and owl:ObjectProperty are used to generate appro-
priate getter/setter methods. rdfs:domain is used to target gettter/setter genera-
tion to the right C++ class, rdfs:range allows more specific C++ datatype selec-
tion. owl:FunctionalProperty, owl cardinality and qualified cardinality are used to
choose if setters/getters should handle only single items, or if list of items should
be supported. owl:Restriction with owl:onDataRange or owl:onClass allow to
further specialize datatype of a property once applied to a given C++ object.
Annotations of type rdfs:comment, rdfs:label, rdfs:seeAlso, rdfs:isDefinedBy are
also used to generate documented C++ classes/methods. This subset is enough
to generate C++ code that is most of the time as good as what a developer
would have written by hand.

Figure 1 shows a simple UML diagram based on a simple geometry Ontology,
and an corresponding OWL/RDF fragment is reproduced below.

@prefix geom: <http :// example.org/geometry#> .

geom:topLeft a owl:ObjectProperty ;

rdfs:domain geom:Rectangle .

geom:Point a owl:Class ;

...

rdfs:subClassOf [a owl:Restriction ;

owl:onProperty geom:x ;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;

owl:onDataRange xsd:double] ;

... .

geom:Rectangle a owl:Class ;

rdfs:subClassOf geom:Shape ;

rdfs:subClassOf [a owl:Restriction ;

owl:onProperty geom:topLeft ;

owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ;

owl:onClass geom:Point] .

AutoRDF provides a simple way to manipulate an RDF dataset from C++
code, as seen below:

geo : : Rectangle r (” http :// example . org / myfancyrectangle ”) ;

// Set one o f my r e c t a n g l e c o o r d i n a t e s − the long way
geo : : Point t l ;
t l . setX (1 . 0) ;
t l . setY (2 . 0) ;

Fig. 1. Geometry ontology. This model is used as example to showcase AutoRDF code
generation capabilities.

t r . setTopLeft (t l) ;

// Set one o f my r e c t a n g l e c o o r d i n a t e s − the s h o r t way
t r . setBottomRight (geo : : Point () . setX (1 1) . setY (1 2)) ;

Those lines of code makes it very natural for a C++ developer to manipulate
RDF data without even knowing its RDF.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

@prefix geo: <http :// example.org/geometry#> .

<http :// example.org/myfancyrectangle >

geo:bottomRight [

geo:x "11" ;

geo:y "12" ;

a geo:Point

] ;

geo:topLeft [

geo:x "1" ;

geo:y "2" ;

a geo:Point

] ;

a geo:Rectangle .

4 Demonstration content

The demonstration will run on a laptop and will feature Protege for ontology
visualization, the geometry ontology and AutoRDF as code generator, and a
simple load/save example. The demonstration will also be available with a more
complex scenario, a draft of the IDFRAud project ontology.

This demonstration using demo geometry ontology is available as a screencast
on the AutoRDF github page at https://github.com/ariadnext/AutoRDF.

5 Future Work

AutoRDF is still very young. It will be used in the coming years by the IDFRAud
project, and as such we will add some more features, towards making working
with RDF datasets easier:

– A data quality assessment API - Checking consistency of a given RDF
dataset towards a reference ontology is of crucial importance to ensure cor-
rect applicative behaviour and avoid faults that are due to poor data quality.

– Some kind of C++ OWL API, in order to make creation of other tools on
top of AutoRDF easier. For instance we plan to create a graphical document
model editor for IDFRAud projet, with user interface components generated
automatically from the underlying ontology.

References

1. Bouml. http://www.bouml.fr/
2. Hibernate OGM - The power and simplicity of JPA for NoSQL datastores.

http://hibernate.org/ogm/

3. IBM Rational Rose. http://www.ibm.com/software/products/fr/enterprise/
4. IDFRAud: An Operational Automatic Framework for Identity Document Fraud

Detection and Profiling - Joint research project with AriadNEXT, IRISA, ENSP
and IRCGN funded by ANR grant ANR-14-CE28-0012. http://idfraud.fr/

5. Neo4j OGM - An Object Graph Mapping Library for Neo4j.
http://neo4j.com/docs/ogm/java/stable/

6. Protégé code generator. http://protegewiki.stanford.edu/wiki/Protege-OWL Code Generator

7. Redland rdf libraries. http://librdf.org/
8. Ferré, S., Hermann, A.: Reconciling faceted search and query languages for the

Semantic Web. Int. J. Metadata, Semantics and Ontologies 7(1), 37–54 (2012)
9. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic mapping of owl

ontologies into java. In: SEKE. vol. 4, pp. 98–103. Citeseer (2004)
10. Levin, M.K., Cowell, L.G.: owlcpp: a c++ library for working with owl ontologies.

Journal of biomedical semantics 6(1), 1 (2015)

